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We consider the properties of the solution of nonlinear problems in heat con- 
duction with boundary conditions of the first kind when the Z-transform (the 
discrete Laplace transform) is used. 

The mathematical apparatus of the Z-transform (the discrete Laplace transform) has come 
to be widelyused for describing the dynamics of objects controlled by means of electronic 
computers or other digital computingsystems [i]. Its use is also effective in those cases 
in which the monitized object is the temperature field of a body, for example of an element 
of a power installation [2]. The dynamic model of the object is obtained by solving the 
heat-conduction problem for the body in question by theZ~transformmethod. 

The possibilities ofusing the Z-transform insolving nonlinear problems will be con- 
sidered here by using the example of a problem in one-dimensional heat conduction in the case 
of a cylindrical body, the differential equation of which we shall represent in the form 

% 

The boundary values will be givenon the surface p = k (an insulated surface): 

p=k, at(k, ~) =o; t (p~k,  ~)=t(k,~). 
ap (2) 

This method of specifying the boundary conditions enables us to obtain a solution independent 
of the type of boundary conditions on theheated surface of the body, the connection to which 
can be established hereinafter by redefining the temperature of the insulated surface in 
terms of a given external-influence function (thetemperature of the heated surface, the heat 
flux, the temperature of the heating medium for boundary conditions of the third kind) [3, 5]:. 

The initialtemperature field will be taken to be uniform: 

t(p, O) ==t i. (3) 

The case of a nonuniforminitial field will be considered separately. 

The hollow cylinder in thiscase is chosen as an example of abody with a one-dimensional 
temperature field. As will be shown below, the results obtained can easily be extended to 
an object havingany geometric shapewith a one-dimensional temperaturefield which is acted 
upon by an external influence through one of its surfaces andhas a second surface that is 
thermally insulated: a plate, a sphere, etc. (A solid cylinder or sphere is a special case 
of a hollow cylinder or sphere.) 

Our analysis showed that among the manymethods for linearizing Eq. (i) described in the 
literature [6, 7], one of the most effective (when the Z-transformis used at the same time) 
is ~ transform defined by the relations 

~(p,~) 
O(p, T):K{t(p, x)}= .f ~(t) dt; (4a) 

0 

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 51, No. i, pp. 143-150, July, 1986. Original article submitted July 4, 1984. 

870 0022-0841/86/5101-0870512.50 @ 1987 Plenum Publishing Corporation 



r f , ,~ t(p, ~)=K-~{e(~,, ~)}. '"~ 

This transform is called Kirchhoff substitution or the Kirchhoff integral transform [7]. Its 
application to Eq. (I) with boundary conditions (2), (3) transforms the latter to the following 
form: 

where 

9 =k ,  

a ( t ) -  Or = v~# (~' ~); 

O ~ ( k ,  ,~) _ O; ~(/~, ~)--O(k, ~ ) - - e i ;  
ap 

~(~, 0) = o, 

t i  

e(p,  ~ ) = O ( p ,  ~ ) - - O i ;  e i =  S-~(t)dt. 
O 

(Za) 

(2a)  

(3a) 

(5) 

The application of the Z-transform involves the use of the concept of discrete (lattice- 
type) functions whose values are defined for discrete values of the argument; the discret- 
ization step must necessarily be constant. The entity to which the Z-transform isapplied is 
a difference equation (in the discretized argument), which replaces the original differential 
equation. The Z-transform is applicable onlyto linear discrete systems, in particular to 
those possessing the property of invariance with respect to a shift in the discrete argument 
[1, 81. 

In solving heat-conduction problems [3, 5] with constant transfer coefficients, we ob- 
tained the linear discrete system by a simple method: replacing the continuous argument -- 
real time T -- with a discrete argument Tn = nAT and replacing the first derivative of the 
temperature with the first difference. The difference equation so obtained is linear, and 
applying the Z transform to its presents no difficulties. 

In the ease considered here, the Kirchhoff transform carried out previously is not 
sufficient for obtaining a linear discrete system if we continue to use real time T as the 
argument when we convert Eq. (la) into a difference equation. The difference equation so ob- 
tained will not be invariant with respect to a shift in the discrete argument T n = nAT, owing 
to the fact that the thermal conductivity a(t) is a function of temperature, i.e., ultimately 
a function of the argument. 

The problem is solved if we take "model" time -- the function 

1 ! a(t)dT 
Fo (Ri -- Ro) 2 (6) 

as the discretized argument. 

When we use a constant step in the discretization with respect to this argument [=AFo= 
a(t)AT(t)/(Ri--Ro) ~, the discrete (lattice) function of the '~odel" temperature ~ [p, n] will 
be defined for the discrete values Fon = nf, and from Eq. (la) we obtain the linear difference 
equation 

(k - -  1)VV~ [p, n] - -  A~ [p, n] = 0, (7) 

where Aq[p, n] = ~[p, n ] - - ~ ,  n - - l ]  is the first (backward) difference of the discrete 
function, which is an analog of the first derivative corresponding to a continuous function. 

Attention should be given to the fact that when we use a constant step AFo = f for 
"model" time, the discretization step with respect to real time 

A~ (t) = t (Ri -- Ro) 2 _ a0A~0 _ A~0 
a(t) a(t) 7(0 (8) 
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is variable and different for different temperatures at differentpoints of the body. For 
a given temperature t(0), at the n-th calculation step Fon with respect to the argument, the 
increment in real time is 

A~,~ (t)) = f (Ri - -  R @~ A~o 
a~V(p) ~,~V(p) ' (9) 

and to the value of the "model" time, Fon= nf there corresponds the "local" real time 

"[;It (P) = Tn-1 (P) -~- A'~R ( p ) =  '~'~ A"g i (O). (IO) 

Application of the Z-transform by means of the relation [i, 8] 

Z{~[p, nl} = ~ ~'[p, nlz-"= ~(p, z) 
n=0 

reduces Eq. (7) to the form 

(k---1)~fV~(p, z ) - - ( l - - z - ' ) ~ ( 9 ,  z)= O. (li) 

As was shown in [3, 5], the solution of Eq. (ii), with the boundary conditions on the 
insulated surface (0 = k) 

d~(k, z) 0; ~(0 = k, z ) =  5(~, z) dp 

can be represented in the following form: 

m 

v=O v~O 

(12) 

(13) 

where 

m 

A~(9, f)-- (-- 1)': ~ C v P, (P) f - i ;  
i = V  

",,) 
the C i are the binomial coefficients (the number of combinations), and the functions Pi(P) 
s a t i s f y  the  r e c u r r e n t  system of equa t ions  

V2P0 (p) = 0; (I --k)*V=Pi (p) ---- Pi-z (P), i ~ I (i 4a) 

and the boundary conditions 

Po(k)= 1,0; P,(k)=O, i />1; dP,(k) O, i>~O. 
d9 (14b) 

It should be noted that the solution (13) is valid for bodies of any geometric shape which 
have one insulated and one heated surface, if the temperature of all the points of the heated 
surface is the same; only the functions Pi(p) will be different. Forbodies of canonical 
geometric shape -- a plate; a hollow or solid cylinder, aball or a sphere, a rod, etc. ~ the 
expressions defining the function functions Pi(P) are determinedanalytically [4, 9]. 

The solution for mappings described inthe form (13), for the one-dimensional case, is 
independent of the form inwhich the boundary conditions on the heated surface are given. 
Connecting it to a concrete type of such conditions is carried out by redefining the 
functions ~(k, z) in terms of the external-influence function. We shall perform this operation 
for boundary conditions of the first kind, when the external-influence function is the temper- 
ature of the heated surface: 

t 3 :  1, t ( p=  1, T):y~(T). (15a) 
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When we pass to discrete values of the external-influence function defined for discrete 

values of the argument, Fon = nf, we have 

g~[n] = t [ 1 ,  n] :- t[1, Fo~] : :  t(! ,  %). (15b) 

Successively applying to the last relation first the Kirchhoff transform and then the Z- 

transform, we obtain 

t~i[n]=~[1, n]=@[1, n]--@ i Oil, n]=K{t[1, hi}; 

Y~ (z) = Z {@ [1, n]} = ~ (1, z). 

(15c) 

(15d) 

Using the expression (13), written for the case p = i, we find 

= ,~z j ; A ~ - & ( 1 ,  f). 
v=0 (16) 

We make the transition from the mapping functions to the original functions (i.e., we 
carry out the inverse Z-transform) in the expressions (13) and (16). As a result, we obtain 

~[k, n] = ~[1, n](A~) - i -  j ~  ?$~[k, n--v ] ;  ~[1, n] = ~ [n]; (17a) 

e[p, n] = ~ A~(p, [)e[k, n- -v ] ;  

v=0 (17b) 

e [p, nl = o [1, nl ~ (p) + ~ ~ (p) ~ [k, n -  q,  

I 
where ?~=A$/A~, v~l; ?~(o)=An(#. [)/A~; mv(p)=A~(p)--A0(P)?$, which define the functions 

O[@, n] for boundary conditions of the first kind. 

In the case of a uniform initial temperature field, the values ~[k, ]] for j~-~0 are 
identically equal to zero, which must be taken into account in using the expressions (17) 

at the first steps of the calculation, i.e., for n~_m. 

The relations obtained can also be used for nonzero initial conditions. For this, we 
must determine the values of the function ~[~ j] for ]=0 , --i, --2, ..., -m, corresponding 

to the given initial temperature field of the body. 

= o,  t (p, o) = t~ (p). 

To do this, we select a number of points along the thickness of the body with coordinates Pi, 
including the point p = k, we find 

ti,(oi) 
Oi(p~)== ~ Z(t)dt; ~[p~, O]=@i(p~)- -Oi(k  ). 

0 

Obviously, ~ [k, 0] = 0. The remaining values of the function ~[k, j] (for j = --i ..... -m) 
are determined by solving the system of equations arising from the expression (17b): 

The total number q of the points must be not less than m (if we exclude the point p = k). 
When q > m, the system is solved by the method of least squares. 

Thus, from the expressions (17), we can calculate the value of the function 0[0, n] at 
the current step of the calculation. 

The determination of the actual value of the desired temperature involves an inverse 
Kirchhoff transform operation: 
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0 [P, nl = t~ [p, n] + @~5 t [9, nl --- K -~ {0 [9, nl}, (18) 

carried out by f_ormulas that can be obtained with the aid of relations (4a), (4b), if we know 
the expression %(t) defining the_thermal_conductivity as a function of temperature. For ex- 
ample, for the linear function ~(t)=I+%# , which is of great practical interest, we have 

O(p, ~)=K{t(p, ~)} =t(p, ~)[1 +~t(o ,  ~)]; (19a) 
- -  / 

/(p, T)=K-~{O(9,  ~)}=~71 {[1 @ 2%t0~9, ~)11/2__1}. (19b) 

The function X(t) can also be given in tabular form; then for the direct and inverse Kirchhoff 
transform we must set up an appropriate table with the aid of the expressions (4). 

When we have found the value of t[p, n] at a given step of the calculation, we must 
also determine the real ("local" time Tn(9) to which the temperaturevalue obtained corre- 
sponds. To do this, first, on the basis of the known functions defining how the thermal 
diffusivity varies with temperature, we determine the value an(9) , corresponding to t[O, n], 
and then the value t[p, n] , which is the average over the temperature interval from t[0, n -- 
i] to t[P, n], for example by the formula~v(!p) 

~"(p) = y [Z, (o) + ~-~ (p)], 

after which we use the expressions (9) and (i0). 

For practicaluse of" the calculation formulas obtained above, we must determine the 
order of the transition from the values of the external-influence function yl(T) to the dis- 
crete value yi[n] =Yi[Fon] =YI[xn] . The difficulties involved in this transition are due to the 
fact that for a constant value of the regular argument step f -- AFo the corresponding step in 
real time, A~n(1)=A%/a~V(1) , is a variable quantity and depends on the temperature of the 
heated surface, t(l, Tn), whose value (as a function of the external influence) is not known 
in advance. In those cases in which we can, without notably lessening the accuracy of the 
calculation, take ~v(1)----~n-1(1), i.e., determine the value of the thermal conductivity from 
the value of the temperature at the preceding calculation step, this problem is eliminated. 
In all other cases, it is indispensable to use iterations whose convergence can be accelerated 
by using a method characteristic of the numerical technique of this approach, connected with 
extrapolation. When we use a first-order extrapolator, we obtain [i] the first approximation 
~0)[1, n] =2~[1 ,  n - - l ] - -  ~[1, n--2] . 

The test of the calculations are performed in the following sequence: ~m[1,  n]--+ 
OCl)[l, n] = ~(i)[l, n]~-Oi-+t~~ n] -- K-i{O~i) [l, n]}. The value obtained (the prognosis) for 
the temperature of the heated surface is taken as its first approximation, which can be used 
for determining (in the first approximation) the value of the desired instant of real time 
T(n i ) : 

1 " A'% ~ T~I)  
t u) [1, nl-+a~l)  ( ! ) -+aaV--  - y [a~) (1) § l , ,_+ A'~ ' ) p j  -- a av 1 (1). 

~ ( )  

This, in turn, enables us to determine the corresponding value of the external-influence fun- 
ction. It must be taken into account that when we use numerical computing techniques, the 
input information, including the current values of the external-influences in the monitoring 
or control of processes taking place in real time, is usually fixed with a constant step ATe �9 
We assume that ATc<ATn and in the memory of the computing system we store the values of the 
external-influence function for at least the last two instants of time: ~t=IAxc and Tz-1= (/--I)ATc 
When we reach the condition TI_I<~X~)~Z , the value of the external-influence function is 
found by interpolation: 

tc2~[1, n l=y<t>(%)=Y[  z-~ A~e 4-Y('~z) 1 A'% " 

After obtaining the second approximation for the temperature of the heated surface, we can, 
where necessary, extend the iterative process in order to obtain more exact values for Tn(1) 
and y(~n) . After obtaining the more exact values for y(Tn) , we carry out the computation 
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procedures for determining the desired temperature at the given point of the body with 
coordinate p, successively applying the relations (15c), (17a), (17b), and (18). 

The method described above for a problem with boundary conditions of the first kind can, 
in the case of a one-dimensional temperature field, be carried over without any special 
difficulty to problems with other boundary conditions. This can be done most simply by re- 
ducing problems with boundary conditions of the second and third kinds to the problem under 
consideration [3, 4]. The method can also be applied to the solution of some two-dimensional 
problems with boundary conditions of the first and second kinds. For example, in the case of 
boundary conditions of the first kind, for the same temperature over the entire heated 
surface, for an axially symmetric body of arbitrary shape, all of the above expressions are 
valid if the functions P~(p) of one geometric coordinate p are replaced by the corresponding 
functions P~(p, u) of two coordinates. The fields of values of the latter in the case of a 
body ofarbitrary shapecannot be determined analytically; they are obtained by numerically 
solving a recurrent system of Poisson equations [5]: 

v2P~(p, tz)= P~(p, u), ~ ~ 1; v~Po (p, u ) =  0 

with the boundary conditions 

OP~ (r**)=o, ~ / o ;  Po(r*)= 1,o; P~(r*)= o, ~/~1. 
ON 

The solutions of nonlinear heat-conduction problems obtained by means of the Z-transform 
retain the fundamental quality that is characteristic of the previously obtained solutions for 
constant transfer coefficients: the possibility of determining the temperatures at any 
points -- for example, at characteristic points -- of the body without calculating the entire 
temperature field. Accordingly, we can construct with the aid of these a set of fairly econom- 
ical algorithms for monitoring and controlling the thermal state of various industrial ob- 
jects. In particular, they have been used by the author in constructing algorithms to control 
processes for the heating of high-powered steam turbines. 

NOTATION 

t(x. z), t(u, ~}, f(p, z), temperature; tinit, initial temperature; r,x; p=r/Rfn~, u=MR h, geometric 
coordinates; A=A~ns/Rh; Rim, Rin~, radii of the heated and insulated surfaces, respectively; 
Rin n, Rout, radii of the inner and outer surfaces, respectively; T, time;: c(t), specific 
heat" ~ (t), thermal conductivity; y(t), density; a(0---k (0/(c(t)?(0) , thermal diffusivity; 

- -  ' a y  

~(t)=~,(t)/~,o; a([:)-~a(l)]ao; ~'o ~ no, va lues  of  X(t) and a ( t ) ,  r e s p e c t i v e l y ,  when t = 0; an (p) , average 
va lue  of  the  thermal  d i f f u s i v i t y  in  the  t empera tu re  i n t e r v a l  f rom t(p, Tn} to t(P, zn-1); F*, 
F**, hea ted  and i n s u l a t e d  s u r f a c e s  of the  two-d~anensional body, r e s p e c t i v e l y ;  g(v), y(Vn)= 
glF~ e x t e r n a l - i n f l u e n c e  f u n c t i o n  on the  body; i ,  v, j ,  m, n,  ~, q, i n t e r g e r s :  Fo, 
"model" t ime (Four i e r  number); f = h F o =  aohZo/(Ri--Ro)~; Az0., c o n s t a n t ;  K and K -x ,  o p e r a t o r s  of 
the  d i r e c t  and i n v e r s e  K i r chhof f  t r ans fo rm ( s u b s t i t u t i o n ) ;  O(p, z), Oi , K i r chhof f  mappings 
f o r  t(p, z) , ti r e s p e c t i v e l y ;  ~(p: z) and Y(z) ,  mappings of the  f u n c t i o n s  #[O, n] and gin] , 
r e s p e c t i v e l y ,  ob ta ined  by means of the  Z - t r ans fo rm;  z,  parameter  of the Z- t rans fo rm ( d i s c r e t e  
Laplace  t r a n s f o r m ) .  
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DETERMINING THE MEAN-SQUARE ERROR ANDDISCRETIZATION STEP OFTHE 

INITIAL DATA OF AN INVERSE PROBLEM IN A SINGLE REALIZATION 

A. I. Maiorov andL. A. Rudometkin UDC 536.24.02 

A method is developed allowing theapproximatevaluesofthe meansquare error and 
optimal discretization step of the-initial data to be found from a single realization 
of a random process. 

Insolvinginverse problems:by:means of information onthe meansquare error a of the 
initial data, the accuracy of theresults obtained depends on the accuracy indetermining a. 
The economy and accuracy of! computer calculations depends largelyon the number of discreti- 
zation points of the initial inverse-problem data. 

To determine theoptimaldiscretization step Hop t of a random process T(T) consisting of 
a useful signal and an arbitrarilydistributed perturbation, it is assumed that the greatest 
frequency T(T) is finite and T~T) is specified by the division Ti, i = i, .... , N, in suffic- 
ient detail (no less than three points must cover each halfperiod of the:characteristic vari- 
ations). Using a cubic spline $5(~ , Ti) interpolating the values of Ti, the characteristic 
frequencY fma x of high-frequency oscillations of the function T(T) withrespect to the number 
of points N* of sign change of the second derivative SX(T, Ti) on the given segment [0, Tmax] is 
found 

N* 

f m . ~ -  2Tm~. 

In accordance with theKotel'nikovandZheleznovdiscretization theorem -- see [i], for 
example -- the divisionSA(T, Ti) is made with a step equal to half the characteristic period 
of the high-frequencyoscillations, that is, with 

1 
//opt = �89 

This step is very close to the maximum possible value at which all the information on theuse- 
ful signal and the errorof theinitial data T(T) is retained. To determine the mean square 
error ff of the initial data T(T), the squares of the deviations of SA(T, T i) at each inter- 
nal point of the chosen optimal grid division from the straight lines passing through two 
adjacent corners are averaged. This leads to the value 

1 N~ T* 1 * - - T ~ - l )  , 
82 = N* - -  1"-"--~= , ---'-~" (r ,+ l  

where T~, i = i, ..., N*, are the corner values of the optimal grid division. To determine 
the difference of 6 from ~, the error of the initial data is specified using a harmonic function 
of the form 

e (x) = a sin (2~fmaxT). 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. i, pp. 150-152, July, 1986. 
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